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LETTER TO THE EDITOR 

Antiferromagnetic transitions in high-T, materials 

H-Q Ding 
Concurrent Computation Program and Physics Department, California Institute of 
Technology, Pasadena, CA 91125, USA 

Received 16 July 1990 

Abstract. The NCel ordering transition of the ZD spin-$ Heisenberg antiferromagnet 
is studied in the small in-plane anisotropy limit through extensive quantum Monte 
Carlo simulations on lattices as large as 96 x 96. At an Ising-like anisotropy energy 
hA = 0.0025, the system orders a t  T,/kT = 0.295. This striking effect and re- 
lated results agree with a wide class of experiments and give some insight into these 
materials. 

Theoretically, two-dimensional isotropic Heisenberg quantum spins remain in a para- 
magnetic state a t  all temperatures [l,  21. However, all the crystals found in nature with 
strong 2D magnetic character go through phase transitions into ordered states [3,4].  
These include the recently discovered high-Tc materials, La,CuO, and YBa2Cu306, 
despite the presence of large quantum fluctuations in the spin-; antiferromagnets. 
At present, the popular explanation for the antiferromagnetic ordering transitions in 
these high-Tc materials emphasizes the very small coupling, J’, between the 2D layers; 
J ’ / J  is estimated to be about However, all these systems exhibit some kind of 
in-plane anisotropy which is of order An interesting case is the spin-1 crystal 
K,NiF, discovered twenty years ago [3]. The magnetic behaviour of I<,NiF, exhibits 
very strong 2D character with an exchange coupling J = 104 K.  I t  has a Nlel ordering 
transition at  TN = 97 K ,  induced by an Ising-like anisotropy, hA % 0.002. 

In this letter, we provide clear evidence to support the picture that the in-plane 
anisotropy is also quite important in bringing about the observed antiferromagnetic 
transition in the most interesting spin-$ case. Adding an anisotropy energy as small 
as hA = 0.0025 will induce an ordering transition at  T,/kJ = 0.295. This striking 
effect and related results, obtained by extensive quantum Monte Carlo simulations, 
agree well with a wide class of experiments and provide some insight into this type of 
material. 

In the antiferromagnetic spin system, superexchange led to the dominant isotropic 
coupling. One of the high-order effects [4,5], due to crystal field, is written as -DS:, 
which is a constant for these spin-$ high-Tc materials. Another second-order effect 
is the spin-orbit coupling. This effect will pick up a preferred direction and lead 
to a 5’;s: term, which also arises due to the lattice distortion in La,CuO,. More 
complicated terms like the antisymmetric exchange [6] can also be generated. For 
simplicity and clarity, we focus the study on the antiferromagnetic Heisenberg model 
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with an Ising-like anisotropy: 

where Si is the spin-: operator a t  the Cu site. The anisotropy parameter h is related 
to the usual reduced anisotropy energy hA through hA = h / 4 J .  In the past, the 
anisotropy field model [7], C c i H A S t ,  has also been measured [3].  However, its origin 
is less clear and, furthermore, the Ising symmetry is explicitly broken. 

The quantum Monte Carlo simulation uses the Suzuki-Trotter transformation [8]. 
The rather complex algorithm is developed [a]  on a state-of-the-art parallel computer, 
the Caltech/JPL MarkIIIfp. To minimize the finite-size effects we used spin systems 
of sizes up to  96 x 96. We used l /mT 5 0.1 so that the systematic errors introduced 
in the transformation are quite small [2,8], well within the statistical accuracy of the 
simulations. 

1.1 1.2 
T 
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Figure 1. ( a )  The specific heat for different sized systems for h = 1. ( b )  Finite-size 
scaling for T,(L) - Tc o( L- l .  

For the large anisotropy system, h = 1, the specific heat C, is shown for several 
spin systems in figure l ( a ) .  The peak becomes sharper and higher as the system 
size increases, indicating a divergent peak in an infinite system, similar to  the 2D Ising 
model. Defining the transition temperature Tc(L) at  the peak of C, for the finite L x L 
system, the finite-size scaling theory [9] predicts that T c ( L )  relates to T, through the 
scaling law 

T,(L) - T, C( L-".  (2) 

Setting v = 1, the Ising exponent, a good fit with T, = 1.063 & 0.003, is shown in 
figure 1( b ) .  A different scaling with the same exponent for the correlation length, 

E W. (T - T,)-" (3) 

is also satisfied quite well, resulting in T, = 1.05 & 0.01. The staggered magnetization 
drops down near T,, although the behaviours are rounded off on these finite-sized sys- 
tems. All the evidence clearly indicates that an Ising-like antiferromagnetic transition 
occurs a t  T, = 1.06, with a divergent specific heat. In the smaller anisotropy case, 
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Figure 2. The inverse correlation lengths for the h = 0.1 system (O), for the h = 0.01 
system (U), and for the h = 0 system ( X )  for comparison. The straight lines are the 
scaling relation: e-1 c* T - Tc. From it we can pin down Tc. 

h = 0.1, similar behaviour is found. The scaling for the correlation length is shown in 
figure 2, indicating a transition at  T, = 0.44. However, the specific heat remains finite 
a t  all temperatures. 

The most interesting case is h = 0.01 (or hA = 0.0025, very close to  those in 
I<,NiF, [3]). Figure 3 shows the staggered correlation function a t  T = 0.3 compared 
with that for the isotropic model [2]. The inverse correlation length measured, together 
with that for the isotropic model ( h  = 0) ,  is shown in figure 2. Below < - I  FZ 0.1 
the Ising behaviour is clearly shown as a straight line. Clearly, the system becomes 
antiferromagnetically ordered around T = 0.3. The best estimate is 

T, = 0.295 h = 0.01. (4) 

0 10 20 30  40 50 
R 

Figure 3. The correlation function on a 96 x 96 system at T = 0.3 for h = 0.01. 
It decays with correlation length M 120. Also shown is the isotropic case h = 0, 
which has E = 17.5. 

It may seem a little surprising that a very small anisotropy can lead t o  a sub- 
stantially higher T,. This may be explained by the following argument. At low T ,  
the spins are highly correlated ( E  - earrplT [a]) in the isotropic case. Since no di- 
rection is preferred, the correlated spins fluctuate in all directions, resulting in zero 
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net magnetization. Adding a very small anisotropy into the system introduces a pre- 
ferred direction, so that the already highly correlated spins will fluctuate around this 
direction, leading to  a global magnetization. 

More quantitatively, the crossover from the isotropic Heisenberg behaviour to the 
Ising behaviour occurs at T, ,  where the correlation length is of order of some power of 
the inverse anisotropy. From the scaling arguments [lo], E - h-”/@ x h - l l 2  where 4 is 
the crossover exponent. For h = 0.01, this relation indicates that  the Ising behaviour 
is valid for [-’ 5 0.1, which is clearly observed in figure 2. A similar crossover around 
E- ’  M 0.3 for h = 0.1 is also observed in figure 2. At low T ,  for the isotropic quantum 
model, the correlation length behaves as [a] N eZaplT where p = Zj’’S(S+l) = 0.199 
for spin-$. Therefore we expect exp(47rp/TC,) - h-’. Since T, is somewhat below T,,, 
we expect 

T, M Z ( s ) S ( S  + 1)/ log(h-’) (5) 

where Z(’) is a spin-S-dependent constant of order 1. Therefore, even a very small 
anisotropy ( h )  will induce a phase transition a t  a substantially higher temperature 
(T, >> h ) .  This crude picture, suggested a long time ago [7,11] to explain the observed 
phase transitions, is now confirmed by extensive quantum Monte Carlo simulations 
for the first time. Note that this problem is an extreme case both because it is an 
antiferromagnet (more difficult for it to  become ordered than the ferromagnet) and 
because i t  has the largest quantum fluctuations (spin-$). Since log(h-’) varies slowly 
with h ,  we can estimate Z(’) at  h = 0.01: 

2(’/2) 2: 1.9. (6) 

This simple result correctly predicts T, for a wide class of crystals found in nature, 
assuming the same level of anisotropy, i.e., hA N 0.002. The high-T, superconductor 
YBa,Cu,O, exhibits a Ndel transition at  TN = 435 I<. With J x 1400 I( [la], our 
results give a quite close estimate: T, = 420 I<. Similar close predictions hold for 
other S = $ systems such as the superconductor ErBa2Cu,0, [13] and the insulator 
K,CoF, [14]. For the high-Tc material La2Cu0,,  J = 1450 I< [2]. This material 
undergoes a Ndel transition at  TN 2: 220 K [15,16]. Our prediction of TC=428K is in 
the same range of TN (compared with the naive expectation that T, - h - 10 I<). In 
this crystal, there is some degree of frustration (see below), so the actual transition is 
pushed down. These examples clearly indicate that in-plane anisotropy could be quite 
important to  bring the system to the NPel order for these high-T, materials. For the 
S = 1 system K,NiF, [3], our results predict a T, = 81 I<, quite close to the observed 

These results have direct consequences regarding the critical exponents. The onset 
of a transition is entirely due to  the Ising-like anisotropy. Once the system becomes 
Ndel ordered, different layers in the 3D crystals will order a t  the same time. Spin 
fluctuations in different layers are incoherent, so the critical exponents such as p,  y, 
v will be the 2D Ising exponents instead of the 3D Ising exponents. ErBa,Cu,O, and 
K,CoF, show clearly such behaviour. However, the interlayer coupling, albeit very 
small (much smaller than the in-plane anisotropy), could induce coherent correlations 
between the layers, so the critical exponents will be somewhere in between the 2D and 
the 3D Ising exponents. La,CuO, and YBa,Cu,O, seem to belong to this category. 

Whether the ground state of the spin-; antiferromagnet spins has the long-range 
Ndel order is a long-standing problem [17]. The existence of the Ndel order is rigorously 

TN = 97 I<. 
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proved [18] for h 2 0.78. In the most interesting case ( h  = 0) ,  numerical calculations 
on small lattices [20,21] suggested the existence of long-range order. Our simulation 
establishes the long-range order for h 2 0.01. 

The fact that  near T,, the spin system is quite sensitive to  the tiny anisotropy 
could have a number of important consequences. For example, the correlation lengths 
measured in La2Cu0, are systematically smaller than the theoretical prediction [2] 
near T,. The greater weakness of the correlations probably indicates that  the frustra- 
tions due to  the next-nearest-neighbour interaction come into play. This is consistent 
with the fact that  TN is below the T, suggested by our results. 

T/ J 

Figure 4. The 
full points are from quantum Monte Carlo simulations. For large JhJ, the system is 
practically an Ising system. Near h = 0 or h = -2 the logarithmic relation ( 5 )  holds. 

Phase diagram for the spin-; quantum system (equation (1)). 

These results, together with those on the isotropic antiferromagnetic Heisenberg 
model [a ]  and the X Y  model [19] (where it is found that a Kosterlitz-Thouless-type 
transition occurs a t  Tc = 0.350 k 0.004) reveal a rich structure as shown in the pha.se 
diagram (figure 4) for these S = 4 quantum spins. When h 5 0,  i.e. when the system 
has the XY-like anisotropy, we expect that arguments similar to  those leading to  ( 5 )  
will also hold in this case. The antiferromagnetic ordered region and the topological 
ordered region are especially relevant to the high-Tc materials. 

In summary, our extensive quantum Monte Carlo study of the 2D antiferromagnetic 
Heisenberg spins shows clearly that a very small Ising-like in-plane anisotropy could 
cause alignment of the spins a t  a relatively high temperature even in the extreme 
quantum case: spin-;. This provides an alternative interpretation of the observed 
Nkel ordering transitions in the undoped high-T, materials. 

This work is supported in part by a grant from the US Department of Energy. I 
would like to  thank Geoffrey Fox, William Goddard and Miloje Makivic for valuable 
discussions. 
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